Lecture 11
 14.2/14.3 Limits, partial derivatives

Jeremiah Southwick

February 15, 2019

Things to note

Exams solutions are posted.

Last class

14.2 Limits

14.2 Limits

In Calculus 1, we considered limits that looked like

$$
\lim _{x \rightarrow a} f(x)
$$

we were interested in a function whose domain was one-dimensional, contained in the number line.

14.2 Limits

In Calculus 1, we considered limits that looked like

$$
\lim _{x \rightarrow a} f(x)
$$

we were interested in a function whose domain was one-dimensional, contained in the number line.
Question
How many ways can you approach the number a along the number line?

14.2 Limits

In Calculus 1, we considered limits that looked like

$$
\lim _{x \rightarrow a} f(x)
$$

we were interested in a function whose domain was one-dimensional, contained in the number line.

Question
How many ways can you approach the number a along the number line?

Answer
Two ways: Either from the right (with larger numbers) or from the left (with smaller numbers).

Recall

Theorem
If $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ exists and is equal to the value of the limits in the equation.

Multivariable limits

For multivariable limits, we have functions whose domain is in the xy-plane or \mathbb{R}^{2}.

Multivariable limits

For multivariable limits, we have functions whose domain is in the $x y$-plane or \mathbb{R}^{2}.
Thus we will want to know how functions behave not as $x \rightarrow a$ but

Multivariable limits

For multivariable limits, we have functions whose domain is in the $x y$-plane or \mathbb{R}^{2}.
Thus we will want to know how functions behave not as $x \rightarrow a$ but as a pair (x, y) approaches a pair of points (a, b).

Multivariable limits

For multivariable limits, we have functions whose domain is in the $x y$-plane or \mathbb{R}^{2}.
Thus we will want to know how functions behave not as $x \rightarrow a$ but as a pair (x, y) approaches a pair of points (a, b).

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

Multivariable limits

Question
How many ways can you approach a pair (a, b) along the xy-plane?

Multivariable limits

Question
How many ways can you approach a pair (a, b) along the xy-plane?
Answer
An infinite number.

Multivariable limits

Question
How many ways can you approach a pair (a, b) along the xy-plane?
Answer
An infinite number.

Evaluating limits

Despite the differences between single-variable and multivariable limits, we evaluate limits in exactly the same way for multivariable functions.

Evaluating limits

Despite the differences between single-variable and multivariable limits, we evaluate limits in exactly the same way for multivariable functions.

Example
Find $\lim _{(x, y) \rightarrow(2,4)} \frac{x^{2}+y^{2}}{y-x}$.

Evaluating limits

Despite the differences between single-variable and multivariable limits, we evaluate limits in exactly the same way for multivariable functions.

Example

Find $\lim _{(x, y) \rightarrow(2,4)} \frac{x^{2}+y^{2}}{y-x}$.
We can simply "plug in" the values that x and y are heading to in the limit.

$$
\lim _{(x, y) \rightarrow(2,4)} \frac{x^{2}+y^{2}}{y-x}=\frac{2^{2}+4^{2}}{4-2}=10 .
$$

Evaluating limits

Some limits will require algebraic manipulations to evaluate them.

Evaluating limits

Some limits will require algebraic manipulations to evaluate them.
Example
Find $\lim _{\substack{(x, y) \rightarrow(1,1) \\ x \neq 1}} \frac{x y-y-2 x+2}{x-1}$.

Evaluating limits

Some limits will require algebraic manipulations to evaluate them.

Example

Find $\lim _{\substack{(x, y) \rightarrow(1,1) \\ x \neq 1}} \frac{x y-y-2 x+2}{x-1}$.
Here we have to include $x \neq 1$ below the limit, which just means we avoid paths where the function we're studying is undefined.

Evaluating limits

Some limits will require algebraic manipulations to evaluate them.
Example
Find $\lim _{\substack{(x, y) \rightarrow(1,1) \\ x \neq 1}} \frac{x y-y-2 x+2}{x-1}$.
Here we have to include $x \neq 1$ below the limit, which just means we avoid paths where the function we're studying is undefined.

$$
\begin{aligned}
& \lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{x y-y-2 x+2}{x-1}=\lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{x(y-2)-(y-2)}{x-1} \\
& \quad=\lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{(x-1)(y-2)}{x-1}=\lim _{y \rightarrow 1} \frac{y-2}{1}=-1 .
\end{aligned}
$$

Evaluating limits

Some limits will require algebraic manipulations to evaluate them.
Example
Find $\lim _{\substack{(x, y) \rightarrow(1,1) \\ x \neq 1}} \frac{x y-y-2 x+2}{x-1}$.
Here we have to include $x \neq 1$ below the limit, which just means we avoid paths where the function we're studying is undefined.

$$
\begin{aligned}
& \lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{x y-y-2 x+2}{x-1}=\lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{x(y-2)-(y-2)}{x-1} \\
& \quad=\lim _{\substack{(x, y) \rightarrow(1,1) \\
x \neq 1}} \frac{(x-1)(y-2)}{x-1}=\lim _{y \rightarrow 1} \frac{y-2}{1}=-1
\end{aligned}
$$

Use proper limit notation!

Evaluating limits

To show that a limit doesn't exist, we use a theorem similar to the theorem above for single-variable limits.

Evaluating limits

To show that a limit doesn't exist, we use a theorem similar to the theorem above for single-variable limits.

Theorem

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \\
\Leftrightarrow
\end{gathered}
$$

$f(x, y)$ approaches the height L no matter what path approaching (a, b) in the domain is chosen.

Evaluating limits

To show that a limit doesn't exist, we use a theorem similar to the theorem above for single-variable limits.
Theorem

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

$$
\Leftrightarrow
$$

$f(x, y)$ approaches the height L no matter what path approaching (a, b) in the domain is chosen.
This makes it manageable to show a limit doesn't exist: Just pick paths that give different values in the limit.

Evaluating limits

Example

Let $f(x)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$. Show $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist.

Evaluating limits

Example

Let $f(x)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$. Show $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist.
First we pick the path $x=0$. This is a valid path since the line $x=0$ goes through (0,0).

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}} \stackrel{\text { along } x=0}{=} \lim _{(0, y) \rightarrow(0,0)} \frac{0-y^{2}}{0+y^{2}}=-1
$$

Evaluating limits

Example

Let $f(x)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$. Show $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist.
First we pick the path $x=0$. This is a valid path since the line $x=0$ goes through $(0,0)$.

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}} \quad \text { along } x=0 \quad \lim _{(0, y) \rightarrow(0,0)} \frac{0-y^{2}}{0+y^{2}}=-1
$$

Conversely, choosing the path $y=x^{2}$, which is valid since the parabola $y=x^{2}$ passes through the origin, we get a different value.
$\lim _{(x, y) \rightarrow(a, b)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}} \stackrel{\operatorname{along} y=x^{2}}{=} \lim _{\left(x, x^{2}\right) \rightarrow(0,0)} \frac{x^{4}-\left(x^{2}\right)^{2}}{x^{4}+\left(x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{0}{2 x^{4}}=0$.

Evaluating limits

Example

Let $f(x)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$. Show $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist.
First we pick the path $x=0$. This is a valid path since the line $x=0$ goes through $(0,0)$.

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}} \quad \text { along } x=0 \quad \lim _{(0, y) \rightarrow(0,0)} \frac{0-y^{2}}{0+y^{2}}=-1
$$

Conversely, choosing the path $y=x^{2}$, which is valid since the parabola $y=x^{2}$ passes through the origin, we get a different value.
$\lim _{(x, y) \rightarrow(a, b)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}} \stackrel{\text { along } y=x^{2}}{=} \lim _{\left(x, x^{2}\right) \rightarrow(0,0)} \frac{x^{4}-\left(x^{2}\right)^{2}}{x^{4}+\left(x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{0}{2 x^{4}}=0$.
Thus the limit doesn't exist.

